Solution Guide for Chapter 12

Here are the solutions for the “Doing the Math” exercises in *Kiss My Math*!

DTM from p. 170-1

2. Start with \(x \). Add 3, then multiply by 4.

So, starting with \(x \), when we add 3, we’ll get: \(x + 3 \). Then we multiply the whole thing by 4, so that’s: \(4(x + 3) \). To unwrap this, then first we’d have to divide by 4, and then subtract 3. That would give us \(x \) all by itself again!

Answer: \(4(x + 3) \), **and to unwrap it, divide by 4, then subtract 3.**

3. Start with \(y \). Multiply by 4, then add 3.

Starting with \(y \), multiplying by 4 would give us \(4y \). Then adding 3, we’d get \(4y + 3 \). Then to unwrap it, we’d have to subtract 3, then divide by 4.

Answer: \(4y + 3 \), **and to unwrap it, subtract 3, then divide by 4.**
4. Start with z. Add 3, then divide by 4.

Starting with z, when we add 3, we’d get: $z + 3$. Then, dividing “$z + 3$” by 4, we’d get:

$$\frac{z + 3}{4}.$$ To unwrap this, first we’d have to multiply by 4, and then subtract 3.

Answer: $\frac{z + 3}{4}$, and to unwrap this, first we’d have to multiply by 4, and then subtract 3.

5. Start with w. Divide by 2, then subtract 1, then multiply by 5.

Starting with w, when we first divide by 2, we’ll get: $\frac{w}{2}$. Then if we subtract 1, we’ll get:

$$\frac{w}{2} - 1$$. Then if we multiply this expression by 5, we’ll get: $5\left(\frac{w}{2} - 1\right)$.

To unwrap this, doing the inverse of the steps, we’d first divide by 5, then add 1, and finally we’d multiply by 2 in order to get back to plain ‘ol w!

Answer: $5\left(\frac{w}{2} - 1\right)$, and to unwrap this, divide by 5, then add 1, then multiply by 2.

6. Start with n. Multiply by 6, then subtract 5, then divide by 7.

Starting with n, when we first multiply by 6, we’d get $6n$. Then subtracting 5, we’d get $6n - 5$, right? Then dividing the whole thing by 7, we’d get: $\frac{6n - 5}{7}$. And doing the inverse, to unwrap it, we’d first multiply by 7, then add 5, and finally divide by 6.

Answer: $\frac{6n - 5}{7}$. To unwrap it, we’d first multiply by 7, then add 5, and then divide by 6.
2. $2(x - 6) = -18$

To isolate x, let’s first divide both sides by 2, so that we can get x out of the parentheses:

\[
\frac{2(x - 6)}{2} = \frac{-18}{2}
\]

\[
(x - 6) = -9
\]

\[
x - 6 = -9
\]

And now, we just need to add 6 to both sides:

\[
x - 6 + 6 = -9 + 6
\]

\[
x = -3
\]

Now, let’s check our answer by sticking in the value $x = -3$ into our original equation:

\[
2(x - 6) = -18
\]

\[
2(-3 - 6) = -18 \ ?
\]

\[
3(-9) = -18 \ ?
\]

\[
-18 = -18
\]

yep! We got a true statement, which means that we found the value of x that makes the original equation true statement.

Answer: $x = -3$

3. \[
\frac{(x - 4)}{2} = 1
\]

To isolate x, let’s start by multiplying both sides by 2:

\[
\frac{(x - 4)}{2} = 1
\]
\[
\Rightarrow \frac{2(x - 4)}{2} = (2)1
\]

Notice that the 2’s cancel on the fraction, just like we intended them to!

\[
\Rightarrow (x - 4) = 2
\]

\[
\Rightarrow x - 4 = 2
\]

and now we just need to add 4 to both sides:

\[
\Rightarrow x - 4 + 4 = 2 + 4
\]

\[
\Rightarrow x = 6
\]

Now, let’s check out answer by plugging in the value \(x = 6\) into the original equation:

\[
\frac{(x - 4)}{2} = 1
\]

\[
\Rightarrow \frac{(6 - 4)}{2} = 1 \ ?
\]

\[
\Rightarrow \frac{2}{2} = 1 \ ?
\]

\[
\Rightarrow 1 = 1, \text{ yep! We found the right value of } x \text{ to make the equation true!}
\]

Answer: \(x = 6\)

4. \(3(x - 5) - 2 = 7\)

To unwrap \(x\), remembering reverse PEMDAS, we should add 2 to both sides, so we get:

\[
3(x - 5) - 2 = 7
\]

\[
\Rightarrow 3(x - 5) - 2 + 2 = 7 + 2
\]

\[
\Rightarrow 3(x - 5) = 9
\]

Now, let’s divide both sides by 3:
\[\Rightarrow \frac{3(x - 5)}{3} = \frac{9}{3} \]

notice that the 3’s cancel on the fraction, and 9 divided by 3 equals 3, so:

\[\Rightarrow (x - 5) = 3 \]
\[\Rightarrow x - 5 = 3 \]

and now we can just add 5 to both sides:

\[x - 5 + 5 = 3 + 5 \]
\[\Rightarrow x = 8 \]

Let’s check our answer by plugging in \(x = 8 \) into our original equation:

\[3(x - 5) - 2 = 7 \]
\[\Rightarrow 3(8 - 5) - 2 = 7 \, ? \]
\[\Rightarrow 3(3) - 2 = 7 \, ? \]
\[\Rightarrow 9 - 2 = 7 \, ? \]
\[\Rightarrow 7 = 7, \text{ yep, we must have found the right value of } x \text{ for this equation.} \]

Answer: \(x = 8 \)

5. \(\frac{(x + 1)}{3} + 2 = 3 \)

Again, undoing PEMDAS, we should subtract 2 from both sides to begin isolating \(x \):

\[\frac{(x + 1)}{3} + 2 = 3 \]
\[\Rightarrow \frac{(x + 1)}{3} + 2 - 2 = 3 - 2 \]
\[\Rightarrow \frac{(x + 1)}{3} = 1 \]
Now we should multiply both sides by 3, so that the 3 will cancel from the bottom of the fraction:

\[
\frac{3(x + 1)}{3} = 3 \times 1
\]

\[\Rightarrow (x + 1) = 3\]

\[\Rightarrow x + 1 = 3\]

finally, we can just subtract 1 from both sides:

\[x + 1 - 1 = 3 - 1\]

\[\Rightarrow x = 2\]

Now let’s check our answer by plugging in \(x = 2\) into the original equation:

\[
\frac{x + 1}{3} + 2 = 3
\]

\[\Rightarrow \frac{(2 + 1)}{3} + 2 = 3\]

\[\Rightarrow \frac{3}{3} + 2 = 3\]

\[\Rightarrow 1 + 2 = 3\]

\[\Rightarrow 3 = 3, \text{ yep, we found the right value of } x!\]

Answer: \(x = 2\)

DTM from p.188

2. \(6x + 10 = 4(x + 3)\)

Okay, in order to collect all the “\(x\)” stuff to one side, and the numbers to the other, we’ll have to first distribute that 4:
\[6x + 10 = 4(x + 3)\]
\[\Rightarrow 6x + 10 = 4x + 12\]

Now, let’s subtract 10 from both sides, so that only constants are on the right side:

\[\Rightarrow 6x + 10 - 10 = 4x + 12 - 10\]
\[\Rightarrow 6x = 4x + 2\]

now let’s subtract 4x from both sides:

\[\Rightarrow 6x - 4x = 4x - 4x + 2\]
\[\Rightarrow 2x = 2\]

Finally, we just divide both sides by 2:

\[\frac{2x}{2} = \frac{2}{2}\]
\[\Rightarrow x = 1\]

Let’s check our answer by plugging \(x = 1\) into the original equation:

\[6x + 10 = 4(x + 3)\]
\[\Rightarrow 6(1) + 10 = 4(1 + 3)\ ?\]
\[\Rightarrow 6 + 10 = 4(4)\ ?\]
\[\Rightarrow 16 = 16\ yep!\ We\ found\ the\ right\ value\ of\ x.\]

Answer: \(x = 1\)

3. \(-2x - 5 = -x + 1\)

Hm, lots of negative signs on this one. Let’s multiply both sides by \(-1\) to get rid of them, just to make thing nicer to deal with:

\[-2x - 5 = -x + 1\]
\[\Rightarrow (-1)(-2x - 5) = (-1)(-x + 1)\]
\[2x + 5 = x - 1 \]

That’s better. Okay, moving forward, let’s subtract \(x \) from both sides:

\[2x - x + 5 = x - x - 1 \]

\[x + 5 = -1 \]

and now let’s subtract 5 from both sides:

\[x + 5 - 5 = -1 - 5 \]

On the left, the 5’s disappear, and you can rewrite that subtraction as “adding a negative on the right, if it helps:

\[x = -1 + (-5) \]

\[x = -6 \]

Let’s check our answer by plugging the value “\(x = -6 \)” back into the original equation:

\[-2x - 5 = -x + 1 \]

\[-2(-6) - 5 = -(-6) + 1 \]

Remembering how to multiply negatives, we see that the negative signs cancel twice here!

\[2(6) - 5 = 6 + 1 \]

\[12 - 5 = 7 \]

\[7 = 7, \text{ yep!} \]

Answer: \(x = -6 \)

4. \(3x + 2 - x = -6 + 2x + 8 \)

Let’s first rewrite the subtraction as “adding a negative”:

\[3x + 2 + (-x) = -6 + 2x + 8 \]
Before we do things to both sides, notice that we can combine some like terms! on the left, the $3x$ and $(-x)$ will combine to give us $2x$, and on the right, the -6 and the 8 will combine to make 2:

$$3x + 2 + (-x) = -6 + 2x + 8$$

$$\rightarrow 2x + 2 = 2x + 2$$

Hey, wait a minute – we have the same thing on both sides! We could subtract $2x$ from both sides, and get:

$$\rightarrow 2 = 2$$

So, now that we have gotten a true statement without x in it, we know that this is true for all values of x. Try plugging in $x = 0, x = 1,$ or $x =$ anything else, and you’ll see that you get true statements each time!

Answer: This equation is true for all values of x.

5. $\frac{2x}{3} + 1 = x$ (Hint: multiply both entire sides by 3.)

Let’s take the hint, and see what happens when we multiply both sides by 3. See, our goal is to get x off of that fraction:

$$\frac{2x}{3} + 1 = x$$

$$\rightarrow 3\left(\frac{2x}{3} + 1\right) = 3x$$

Distributing the 3 inside the parentheses, and writing 3 as $\frac{3}{1}$ to multiply it times the fraction, we get:
\[
\Rightarrow \frac{3}{1} \left(\frac{2x}{3} \right) + 3(1) = 3x \\
\Rightarrow \frac{6x}{3} + 3 = 3x \\
\]

We can cancel a factor of “3” from the top and bottom of the fraction, and get:

\[
\Rightarrow 2x + 3 = 3x \\
\]

Phew! The \(x\) is finally off that fraction.

Okay, in order to get all the “stuff with \(x\)” on one side, let’s subtract \(2x\) from both sides:

\[
2x - 2x + 3 = 3x - 2x \\
\Rightarrow 3 = 1x \\
\Rightarrow 3 = x \\
\Rightarrow x = 3 \\
\]

To check our answer, let’s plug the value \(x = 3\) wherever we see \(x\) in the original equation:

\[
\Rightarrow \frac{2x}{3} + 1 = x \\
\Rightarrow \frac{2(3)}{3} + 1 = 3 \quad ? \\
\Rightarrow \frac{6}{3} + 1 = 3 \quad ? \\
\Rightarrow 2 + 1 = 3 \quad ? \\
\Rightarrow 3 = 3, \text{ yep! We found the right value for } x. \\
\]

Answer: \(x = 3\)
6. \(x + 2xy + 1 - xy = 2x - 7 + xy\) (Hint: notice what happens to the “xy” term when you collect variables together and combine like terms correctly!)

Well, this looks like a big mess. Let’s deal with it a step at a time. First, let’s rewrite the subtraction as “adding negatives” and go ahead and write in the “1” coefficients, just to make this problem easier to look at:

\[
1x + 2xy + 1 + (-1xy) = 2x + (-7) + 1xy
\]

We have \(x\) terms, \(xy\) terms, and constants. The hint says we should pay attention to the \(xy\) terms – so let’s do that. On the left side of the equation, we have \(2xy\) and also \((-1xy)\), so they will combine to give us \(-xy\). Let’s rewrite the problem:

\[
1x + 1xy + 1 = 2x + (-7) + 1xy
\]

Notice that we can subtract \(-xy\) from both sides, and the terms disappear completely!

\[
\Rightarrow 1x + 1xy - 1xy + 1 = 2x + (-7) + 1xy - 1xy
\]

\[
\Rightarrow 1x + 1 = 2x + (-7)
\]

Ah, much nicer. Now let’s subtract \(1x\) from both sides:

\[
\Rightarrow 1x - 1x + 1 = 2x - 1x + (-7)
\]

\[
\Rightarrow 1 = x + (-7)
\]

Now let’s add 7 to both sides, and we’ll get:

\[
\Rightarrow 1 + 7 = x + (-7) + 7
\]

\[
\Rightarrow 8 = x
\]

\[
\Rightarrow x = 8
\]

Let’s check our answer by plugging the value \(x = 8\) into the original equation, remembering that the \(xy\) terms will all disappear completely:
\[8 + 2(8)y + 1 - 8y = 2(8) - 7 + (8)y \; \]
\[\rightarrow 8 + 16y + 1 - 8y = 16 - 7 + 8y \; \]

at this point, we can combine the “y” terms and see that they disappear completely, just like we knew they would (these used to be the xy terms)

\[\rightarrow 8 + 1 + 8y = 16 - 7 + 8y \; \]

(subtract 8y from both sides, and get)

\[\rightarrow 8 + 1 = 16 - 7 \; \]

\[\rightarrow 9 = 9 \; \text{yep! We got the right value of x.} \]

Answer: \(x = 8 \)